Extremality criteria for the supereigenvector space in max-plus algebra
نویسندگان
چکیده
We present necessary and sufficient criteria for a max-algebraic supereigenvector, i.e., solution of the system $A\otimes\textbf{x}\geq\textbf{x}$ with $A\in\overline{\mathbb{R}}^{n\times n}$ in max-plus algebra, to be an extremal. also show that suggested extremality can verified $O(n^2)$ time any given $\textbf{x}$.
منابع مشابه
Max-plus algebra
The max-plus semiring Rmax is the set R∪{−∞}, equipped with the addition (a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a + b. The identity element for the addition, zero, is −∞, and the identity element for the multiplication, unit, is 0. To illuminate the linear algebraic nature of the results, the generic notations +, , × (or concatenation), 0 and 1 are used for the addition, the sum, ...
متن کاملLinear Projectors in the max-plus Algebra
In general semimodules, we say that the image of a linear operator B and the kernel of a linear operator C are direct factors if every equivalence class modulo C crosses the image of B at a unique point. For linear maps represented by matrices over certain idempotent semifields such as the (max,+)-semiring, we give necessary and sufficient conditions for an image and a kernel to be direct facto...
متن کاملMax-Plus algebra on tensors and its properties
In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.
متن کاملCyclic jobshop problem and (max,plus) algebra
In this paper, we focus on the cyclic job-shop problem. This problem consists in determining the order of a set of generic tasks on machines in order to minimize the cycle time of the sequence. We propose an exact method to solve this problem. For each solution, a linear max-plus model (possibly non causal) is obtained. To evaluate the performance of a considered schedule, we build the causal m...
متن کاملMax-plus algebra models of queueing networks
A class of queueing networks which may have an arbitrary topology, and consist of single-server fork-join nodes with both infinite and finite buffers is examined to derive a representation of the network dynamics in terms of max-plus algebra. For the networks, we present a common dynamic state equation which relates the departure epochs of customers from the network nodes in an explicit vector ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2022
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2022.08.005